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Abstract Many applications such as data visualization or object recognition benefit
from accurate knowledge of where a person is looking at. We present a system for
accurately tracking gaze positions on a three dimensional object using a monocu-
lar . We accomplish this by 1) using digital manufacturing to create stimuli whose
geometry is know to high accuracy, 2) embedding fiducial markers into the manu-
factured objects to reliably estimate the rigid transformation of the object, and, 3)
using a perspective model to relate pupil positions to 3D locations. This combina-
tion enables the efficient and accurate computation of gaze position on an object
from measured pupil positions. We validate the accuracy of our system experimen-
tally, achieving an angular resolution of 0.8◦ and a 1.5% depth error using a simple
calibration procedure with 11 points.

1 Introduction

Understanding the viewing behavior of humans when they look at objects plays
an important role in applications such as data visualization, scene analysis, object
recognition, and image generation [33]. The viewing behavior can be analyzed by
measuring fixations using eye tracking. In the past, such experiments, especially
for object exploration tasks, were performed with flat 2D stimuli presented on a
screen [12]. However, since the human visual attention mechanism has been de-
veloped in 3D environments, depth may have an important effect on viewing be-
havior [20]. To understand the role of depth information, some studies [15, 21, 8]
recently combined eye tracking with stereoscopic displays. However, these displays
fail to provide natural depth cues; for example they suffer from stereoscopic decou-
pling, the mismatch of accommodation and vergence for the displayed depth [13].
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Fig. 1 We accurately estimate 3D gaze positions by combining digital manufacturing, marker
tracking and monocular eye tracking. With a simple procedure we attain an angular accuracy of
0.8◦.

Since our research objective is to investigate the viewing behavior of humans for
stimuli that are genuinely three-dimensional, we need to be able to track 3D gaze
positions with high accuracy.

Standard eye tracking setups only determine human’s viewing direction. The
most common approach for determining viewing depth is to employ a binocular
eye tracker and measure eye , that is the orientation difference between the left and
the right eye that ensures both are focused on the same point in space. However, as
exemplified in Fig. 2, experimentally determining depth from binocular vergence is
inherently ill-conditioned. Even for an object at a modest distance the eyes and the
object form a highly acute triangle so that the inevitable inaccuracies in measuring
pupil positions [12] lead to large errors in the estimated depth values. Although non-
linear mappings can be employed to reduce the error [7, 23, 1, 11, 19, 22, 26], these
require complex calibration and expensive optimization of the mapping while still
leading to relatively large inaccuracies.

We base our approach on a mapping between viewing directions gathered by an
eye tracker and the physical world. This is done similar to EyeSee3D [27] by track-
ing fiducial markers in physical space with a camera mounted on the eye tracker. We
extend their approach by not only acquiring establishing which object is looked at
but also determining the exact 3D gaze position on the particular object. The main
components to achieve such accurate tracking are:

1. are generated by digital manufacturing so that their geometry is known to high
accuracy and also available in digital form without imposing restrictions on the
geometry that is represented.

2. are integrated into the 3D stimuli in order to reliably and accurately estimate the
stimuli’s 3D position relative to the head.

3. A simple calibration procedure that allows for an accurate computation of the
from 3D positions to monocular pupil positions.

4. An for the mapping enables the computation of plausible positions on the 3D
stimulus.

Our results demonstrate that for typical geometries we are able to obtain 0.8◦ an-
gular resolution and reliable depth values within 1.5% of the true value, including
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Fig. 2 Inherent error of vergence-based depth estimation for an object at a distance of 500 mm
away from the eyes. The red crosses mark estimated 3D positions for normally distributed gaze
directions with mean equal to the correct angle for the object (black dot) and a variance of 0.5◦.
The highly acute triangle that leads to the ill-conditioning of the depth calculation is shown as
dashed lines. The worst case relative error is almost 50%.

around silhouettes where the geometry has a large slope and depth estimation is
hence particularly difficult. We accomplish this with only a and an 11-point calibra-
tion procedure.

In the next section, we discuss related work on . Subsequently, in Sec. 3, we detail
our setup and explain how 3D positions can be related to pupil coordinates. This is
followed by a discussion of how 3D viewing positions can be obtained from pupil
positions in Sec. 4. Experimental results verifying the accuracy of our approach are
presented in Sec. 5. We conclude the paper in Sec. 6 with a discussion and possible
directions for future work.

2 Related Work

The viewing behavior of humans is typically analyzed using eye tracking by mea-
suring a subject’s fixations. However, usually only flat 2D stimuli on a screen are
employed, e.g. [3, 16, 24, 28], even when one is interested in 3D objects. Only
recently the first studies considering the effect of depth were performed. Lang et
al. [21] collected a large eye fixation database for still images with depth infor-
mation presented on a stereoscopic display. Their results show that depth can have
a significant influence on a subject’s fixations. Jansen et al. [15] also employed a
stereoscopic display to analyze the effect of depth, demonstrating that depth infor-
mation leads to an overall increase in spatial distribution of gaze positions for visual
exploration tasks. Both Lang et al. [21] and Jansen et al. [15] report that visual



4 Xi Wang, David Lindlbauer, Christian Lessig and Marc Alexa

attention shifts over time from objects closer to the viewer to those farther away.
Differences in fixations between 2D and 3D stimuli were recently also investigated
for stereoscopic video [8, 9, 14, 29]. Discrepancies were mainly observed for scenes
that lack on obvious (high-level) center of attention, with fixations having a larger
spatial distribution when depth information is present.

Existing work investigating the role of depth information on fixation locations
hence demonstrates that, at least under certain circumstances, depth has a significant
effect on a subject’s viewing behavior. However, so far only stereoscopic displays
were employed, which do not provide all depth cues and suffer from stereoscopic de-
coupling [13]. Moreover, Duchowski et al. [6] showed that for stereoscopic displays
the gaze depth of subjects does not fully correspond to the presented depth. There-
fore, we believe that to understand viewing behavior for 3D objects, one should
study stimuli that are genuinely three-dimensional. This provides the principal mo-
tivation for our work.

With 3D stimuli, also the depth values of fixation points have to be determined.
The most common approach for obtaining fixation depth is to measure the vergence
using a binocular eye tracker. However, computing depth values from binocular ver-
gence is ill-conditioned since already for modest distances minuscule measurement
errors in the pupil positions lead to large depth errors, cf. Fig. 2. To improve the
accuracy, Essig et al. [7] trained a neural network that maps from eye vergence to
depth values. Maggia et al. [23] proposed a somewhat simpler but also nonlinear
model for the mapping from measured disparity to depth. Building on these works,
current techniques [1, 11, 19, 22, 26] that employ binocular vergence to determine
fixation depth obtain an error that is within 10% of the correct depth value.

Our work was inspired by existing approaches relating view directions to known
geometry, e. g. in applications of virtual reality [32, 5]. Pfeiffer and Renner used
fiducial markers to align the physical world to camera space [27]. By measuring eye
vergence, they achieved an angular accuracy of 2.25 degrees, which gives correctly
classified fixation targets on the scale of whole objects. However, for investigating
human viewing behavior on the surface of 3D objects, more accurate gaze tracking
is required. Consequently, we create a setup with the goal of tracking visual attention
on 3D objects.

3 From 3D positions to pupil coordinates

In this section we describe our setup and how it enables to accurately determine gaze
positions on an object. We use a monocular head mounted eye tracking device with
a front facing world camera capturing the environment and an eye facing camera
capturing the pupil movement.

The world camera yields the position and orientation of fiducial markers, for
example fixed to objects, relative to the subject’s head relative to its reference frame.
A projective mapping is then relates these 3D coordinates to pupil positions relative
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to the camera tracking the eye. This establishes a mapping between points in 3D
space and pupil coordinates (this basic idea is illustrated in Figure 3).

The mapping is calibrated by having a subject focus on markers at different loca-
tions, including varying depths. Once the mapping is established, 2D pupil positions
can be turned into rays corresponding to gaze directions in 3D space. The gaze di-
rections then determine the 3D positions on the object a subject is looking at, by
intersecting the rays with the known 3D geometry.

In the following we will describe these steps in more detail.

Fig. 3 The main idea of our approach is to establish a mapping between points in 3D space (i.e.
world coordinate system) and pupil coordinates in the image coordinate system of the eye camera.
We consider all 3D positions relative to the coordinate system of the world camera (i.e. camera
coordinate system). (b) A point in world coordinate system is first transformed into the camera
coordinate system. (c) We model the mapping between pupil position in the eye camera image and
a location in world camera space as projection. (d) From the estimated projective transformation,
we can estimate a corresponding eye ray for each pupil position.

3.1 From local 3D positions to world-camera coordinates

We employ fiducial markers to determine the 3D coordinates of locations in space in
the world camera coordinate system. The mapping of a position x∈R3, for example
a point on a marker, to its projection m ∈ R2 in the world camera image is given by(

m
1

)
= K(Rx+ t), RTR = I (1)

where K : R3→ R2 is the intrinsic world camera matrix, modelling the perspective
mapping, and R and t are the rotation and translation of the camera, forming the
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rigid transformation. The mapping of x to its representation w ∈ R3 in the world
camera coordinate system is hence

w = Rx+ t. (2)

We determine the intrinsic world camera matrix K, which includes both radial
and tangential distortion, in a preprocessing step using the approach of Heng et
al. [10]. To determine the rigid transformation given by R and t we exploit that de-
tected marker corner points mi ∈ R2 in the camera image have known 3D locations
xi ∈ R3 in the marker’s local coordinate system. Given at least three such points
mi in the camera image, we can determine R and t by minimizing the reprojection
error.

Once R and t have been estimated, we can employ Eq. 2 to determine the position
of the center of the marker in the world camera coordinate system, as required for
calibration, or to map an object with a fixed relative position to a marker into the
space, as is needed to determine gaze positions.

3.2 From world camera coordinates to pupil positions

Given positions w ∈ R3 in the world camera coordinate system, obtained as de-
scribed in the last section, we have to relate these to a person’s gaze direction, de-
scribed by pupil positions p in the eye camera image. We model the mapping as a
projective transformation, because the cameras and the system of the eye (i.e. the
head) are in fixed relative orientation and position. In homogeneous coordinates the
transformation is given by

s
(

p
1

)
= Q

(
w
1

)
(3)

where Q ∈ R3×4 is a projection matrix that is unique up to scale. Given a set of
correspondences {(wi,pi)} between 3D points wi in the world camera coordinate
system and pupil positions pi describing the gaze direction towards wi, we can de-
termine Q by minimizing

E(Q) = ∑
i

∥∥∥∥si

(
pi
1

)
−Q

(
wi
1

)∥∥∥∥2

2
. (4)

Fixing one coefficient of Q to eliminate the freedom on scale (we choose Q3,4 = 1),
this is a standard linear least squares problem. In practice, we solve this problem
using correspondences {(wi,pi)} obtained during calibration, as described in Sec. 5.

Since Q is a projective transformation we can factor it into an upper triangular
intrinsic camera matrix AQ and a rigid transformation matrix TQ = (RQ, tQ). The
factorization is given by

Q = AQTQ = (AQRQ,AQtQ) (5)
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and hence can be determined from the RQ decomposition of the left 3× 3 block
AQRQ of Q. It can be computed using the QR decomposition as

J(AQRQ)
T J = (JAT

QJ)(JRT
QJ) (6)

where J is the exchange matrix, which in our case is the column inversed version of
the identity matrix.

3.3 From pupil positions to

So far we have related 3D locations to pupil positions. To determine a gaze point on
an object we also have to relate pupil positions to a cone of positions in space. This
also corresponds to the angular accuracy of our setup.

With the intrinsic eye camera matrix AQ, as determined in the last section, we
can relate a homogeneous pupil position p̂ = (p,1)T to an associated ray r in 3D
world camera space:

p̂ = AQr. (7)

The depth along r is indeterminate since AQ is a projection matrix. The angle be-
tween two rays ri,r j, represented by pupil coordinates pi,p j, is hence given by

cosηi j =
rT

i r j

‖ri‖‖r j‖
=

p̂T
i A−TQ A−1

Q p̂ j

‖A−1
Q p̂i‖‖A−1

Q p̂ j‖
. (8)

This suggests to interpret the matrix A−TQ A−1
Q as an induced inner product MQ =

(AQAT
Q)
−1 on homogeneous pupil coordinates. The angle ηi j then becomes

cosηi j =
p̂T

i MQp̂ j

(p̂T
i MQp̂i)1/2(p̂T

j MQp̂ j)1/2
. (9)

For multiple pairs pi, p j, Eq. 9 can be solved efficiently when the involved matrices
are precomputed.

4 From pupil coordinates to locations on an object

Our objective is to determine a gaze position w̄ ∈ R3 in space from a pupil position
p̄ describing a gaze direction. Central to our approach for determining w̄ is that the
geometry of the observed object is known to high accuracy. This is ensured by 3D
printing the object M from its digital representation as a triangulated surface M.
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Fig. 4 Pupil positions provide by the eye tracker correspond to cones in 3D space. The fiducial
marker on the 3D printed marker allows tracking the geometry in 3D space. Intersecting the cone
against the geometry yields gaze points on the object.

The printed object also includes a fiducial marker, which allows us to determine the
rigid transformation of the object in space as described in Sec. 3.1.

As explained before, in view of inaccuracies, the pupil position p̄ describes a
cone in 3D space. Consequently, we wish to identify the vertices on the object that
intersect the cone and are visible. We could then potentially identify the vertex clos-
est to the center of the cone as the desired gaze location. The approach is illustrated
in Figure 4.

Let
p̂i = Q(Rvi + t) (10)

be the homogeneous pupil position pi = (pi1 , pi2 , pi3)
T corresponding to vertex vi.

Then we find the set of vertices

Γc(p̄) =
{

vi ∈M
∣∣∣∣ ˆ̄pTMQp̂i

( ˆ̄pTMQ ˆ̄p)1/2(p̂T
i MQp̂i)1/2

> cosc
}

; (11)

that is, we are determining which vertices vi on the object lie within the cone of
angular size c centered around the eye ray corresponding to p̄. From these vertices,
we consider the one closest to the eye as the intersection point. This point can be
determined efficiently solely using pi3 . Note that since the metric MQ has a natural
relation to eye ray angle, we can choose c based on the accuracy of our measure-
ments.
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4.1 Spatial partitioning tree

For finely tessellated meshes, testing all vertices based on Eq. 11 above results in
high computational costs. Spatial partitioning can be used to speed up the compu-
tation, by avoiding to test vertices that are far away from the cone. Through ex-
perimentation we have found sphere trees to outperform other common choices of
spatial data structures (such as kd-trees, which appear as a natural choice) for the
necessary intersection against cones.

Each fixation on the object is the intersection of the eye ray cone with the object
surface, which is represented by a triangulated surface M. Therefore, in the first step
we perform an in-cone search to find all intersected vertices. This intersection result
contains both front side and back side vertices. We are, however, only interested in
visible vertices that are unoccluded with respect to the eye.

Popular space-partitioning structure for organizing 3D data are K-d trees, which
divide space using splitting hyperplanes, and octrees, where each cell is divided
into eight children of equal size. For our application, such axis-aligned space par-
titionings would require a cone-plane or cone-box intersection, which potentially
incurs considerable computational costs. In order to avoid this, we build a space-
partitioning data structure based on a sphere tree.

Sphere tree construction Our sphere tree is a binary tree whose construction pro-
ceeds top-down, recursively dividing the current sphere node into two child nodes.
To determine the children of a node, we first apply principle component analysis
and use the first principle vector, which corresponds to the largest eigen value of
the covariance matrix, as the splitting direction. A partitioning hyperplane orthog-
onal to the splitting direction is then generated so that the elements in the node are
subdivided into two sets of equal cardinality. Triangle faces intersecting with the
splitting hyperplane are assigned to both sets. The child nodes are finally formed as
the bounding spheres of the two sets and computed as proposed in [31].

We calculate the sphere-cone intersection following the method proposed in [30].
The problem is equivalent to checking whether the sphere center is inside an ex-
tended region, which is obtained by offsetting the cone boundary by the sphere
radius. Note that the extended region differs from the extend cone, and its bottom
is a sector of the sphere. For each intersected leaf node, we perform the following
in-cone test to find the intersected vertices.

In-cone test A view cone is defined by an eye point a (i. e. the virtual eye position),
a unit length view direction r , and opening angle δ . The in-cone test allows us to
determine if a given point vi lies inside this cone. Given the matrix M ∈ R4×4

M =

(
S, −Sa
−aT S, aT Sa

)
, (12)

where S = rrT − d2I with d = cosδ , the point vi lies inside the cone only when
v̂T Mv̂ > 0 where
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v̂ = v̂i− â =

(
vi
1

)
−
(

a
1

)
. (13)

Visibility test The visibility of each intersected vertex is computed by intersecting
the ray from eye point to the vertex with the triangle mesh. The vertex is visible if
no other intersection is closer to the eye point. We use the Möller-Trumbore ray-
triangle intersection algorithm [18] for triangles in intersected bounding spheres.
In our implementation, the maximum tree depth is set to 11, which allows for fast
traversal and real-time performance.

4.2 Implementation

Our software implementation uses OpenCV [25], which was in particular employed
to solve for the rigid transformations R,t as described in Sec. 3.1. We determine Q
using Eq. 4 with the Ceres Solver [4]. The optimization is sensitive to the initial esti-
mate, which can result in the optimization converging to a local minimum, yielding
unsatisfactory results. To overcome this problem, we use a RANSAC approach for
the initial estimate, with the error being calculated following Eq. 14 and 1000 iter-
ations. The result of this procedure serves as input for the later optimization using
the Ceres solver.

5 Experiments

In the following, we will report on preliminary experimental results that validate the
accuracy of our setup for tracking 3D gaze points and that demonstrate that a small
number of correspondences suffices for calibration. These results were obtained us-
ing two exploratory experiments with a small number of subjects (n = 6).

Participants and apparatus We recruited 6 unpaid participants (all male), all of
which were students or staff from a university. Their age ranged from 26 to 39 years
and all had normal or corrected-to-normal vision, based on self-reports. Four of
them had previous experience with eye tracking.

The physical setup of our experiment is shown in Fig. 5. For measuring fixations
we employed the Pupil eye tracker [17] and the software pipeline described in the
previous sections.

5.1 Accuracy of calibration and gaze direction estimation

In Sec. 3.2 we explained how the projective mapping Q from world camera coordi-
nates to pupil positions can be determined by solving a linear least squares problem.
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Fig. 5 Physical setup used in our experiments.

As input to the problem one requires correspondences {(wi,pi)} between world
camera coordinates wi and pupil positions pi. The correspondences have to be de-
termined experimentally, and hence will be noisy. The accuracy with which Q is
determined therefore depends on the number of correspondences that is used. In our
first experiment we investigated how many correspondences are needed to obtain a
robust estimate for Q. The same data also allows us to determine the angular error
of our setup.

Procedure We obtained correspondences {(wi,pi)} by asking a subject to focus
on the center of a single fiducial marker (size 4 cm× 4 cm) while it is presented
at various locations in the desired view volume (see Fig. 1, third image). We have
augmented the center of the marker with a red dot to make this task as unambigu-
ous as possible. At each position of the marker, we estimate a single correspon-
dence (wi,pi) based on the estimation of the rigid transformation for the marker, cf.
Sec. 3.1. For each participant, we recorded 100 correspondences {(wi,pi)} for two
different conditions, resulting in a total of 200 measurements per participant. In the
first condition the head was fixed on a chin rest while in the second condition partic-
ipants were only asked to keep facing towards the marker. For both conditions the
marker was moved in a volume of 0.37 m (width)×0.4 m (height)×0.25 m (depth)
at a distance of 0.75 m from the subject (see Fig. 5).

Data processing For each dataset we perform 10 trials of 2-fold cross validation
and estimate the projection matrix using 7 to 49 point pairs. In each trial, the 100
correspondences are randomly divide into 2 bins of 50 point pairs each. One bin is
used as training set and the other as testing set. Point pair correspondences from the
training set are used to compute the projection matrix Q which is then employed to
compute the error between the gaze direction given by the pupil position pi and the
true direction given by the marker center wi for the points in the test data set. From
Eq. 9 this error can be calculated as

ηi = cos−1 pT
i MQQwi

(pT
i MQpi)1/2(wT

i QTMQQwi)1/2
. (14)
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Analysis and results In order to analyze the influence of the number of calibration
points as well as the usage of the chin rest on the estimation accuracy, we performed
a repeated measures ANOVA (α = .05) on the independent variable Chin rest with 2
levels (with, without) and Calibration with 43 levels (the corresponding number of
calibration points, i.e., 7 to 49). The dependent variable was the calculated angular
error in degree. We used 10 rounds of cross validation for our repeated measures,
with each data point being the average angular error per round. This resulted in an
overall of 860 data points per participant (2 Chin reset × 43 Calibration × 10 cross
validation).

Results showed a main effect for Calibration (F42,210 = 19.296, p < .001). The
difference between 20 points (M = 0.75, SE = 0.02) and 42, 44, 45, 46, 47 and 48
points (all M = 0.71, SE = 0.02) was significantly different, as well as 22 points
(M = 0.74, SE = 0.02) compared to 45 points (all p < .05). No other combinations
were statistically significantly different, arguably due to high standard deviation for
lower number of calibration points. Mean values and standard errors are depicted in
Figure 6.

When using 11 to 49 calibrations points, the angular error averages at around
0.73◦ (SD = 0.02), which is within the range of human visual accuracy and goes
in line with the specifications of the pupil eye tracker for 2D gaze estimation [17,
2]. The results furthermore demonstrate that even for a relatively low number of
calibration points, comparable to the 9 points typically used for calibration for 2D
gaze estimation [12, 17], our method is sufficiently accurate.

Number of calibration points
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Fig. 6 Mean values and standard errors for angular error as a function of the number of calibration
points ranging from 7 to 49. No significant changes in angular error occur when using 11 or more
calibration points.

No significant effect for Chin rest (F1,5 = 0.408, p = .551; with chin rest
M = 0.73, SE = 0.05; without chin rest M = 0.78, SE = 0.04) was present, sug-
gesting that the usage of a chin rest has negligible influence on the angular accuracy
and our method is hence insensitive to minor head motion. This goes in line with
the observation that light head motion has no effect on the relative orientation and
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position of eye, eye camera, and world camera. It should be noted, however, that par-
ticipants, although not explicitly instructed, were mostly trying to keep their head
steady, most likely due to the general setup of the experiment. Giving participants
the ability to move their head freely is an important feature for exploring objects
in a natural, unconstrained manner. However, quantifying the effect of large scale
motion on accuracy should be subject to further investigations.

5.2 Accuracy of 3D gaze position

Fig. 7 Left: physical bunny model with target markers (numbers indicate order); right: heat map
of obtained gaze directions.

In our second experiment we explored the accuracy of our approach when view-
ing 3D stimuli. As model we employed the Stanford bunny and marked a set of
pre-defined target points on the 3D printed bunny as shown in Fig. 7, left. After a
calibration with 11 correspondences, as described in the last section, the test sub-
jects were asked to focus on the individual targets (between 1 and 2 seconds). A heat
map of the obtained gaze positions is shown in Fig. 7, right. Fixations are calculated
based on Eq. 11 where the angular size c is set to be 0.6◦. Table 1 shows the angular
error of each target in degrees as well as the depth error in mm.

Angular error depends mostly on the tracking setup. However, since the intersec-
tion computation with eye ray cones is restricted to points on the surface (vertices
in our case), we get smaller angular errors on silhouettes.

Depth accuracy, on the other hand, depends on the slope of the geometry. In
particular, at grazing angles, that is when the normal of the geometry is orthogonal or
almost orthogonal to the viewing direction, it could become arbitrarily large. For the
situations of interest to us where we have some control over the model, the normal
is orthogonal or almost orthogonal to the viewing direction mainly only around the



14 Xi Wang, David Lindlbauer, Christian Lessig and Marc Alexa

silhouettes. Since we determine the point on the object that best corresponds to the
gaze direction, we obtain accurate results also around silhouettes. This is reflected
in the preliminary experimental results where we obtain an average depth error of
7.71 mm at a distance of 553.97 mm, which corresponds to a relative error of less
than 2%, despite three of five targets being very close to a silhouette.

Table 1 Errors of individual markers on bunny.

Marker index 1 2 3 4 5

Angular error (deg.) 0.578 1.128 0.763 0.846 0.729
Depth error (mm) 7.998 8.441 10.686 3.036 8.381

6 Discussion

The proposed method for estimating fixations on 3D objects is simple yet accurate.
It is enabled by:

• generating stimuli using digital manufacturing to obtain precisely known 3D ge-
ometry without restricting its shape;

• utilizing fiducial markers in a known relative position to the geometry to reliably
determine its position relative to a subject’s head;

• using a projective mapping to relate 3D positions to 2D pupil coordinates.

We experimentally verified our approach using two explorative user studies. The
results demonstrate that 11 correspondences suffice to reliably calibrate the mapping
from pupil coordinates to 3D gaze locations with an angular accuracy of 0.8 degree.
This matches the accuracy of 2D gaze tracking. We achieve a depth accuracy of
7.7 mm at a distance of 550 mm, corresponding to a relative error of less than 1.5%.

With the popularization of 3D printing, our approach can be easily applied to
a large variety of stimuli, and thus usage scenarios. At the same time, it is not re-
stricted to 3D printed artifacts and can be employed as long as the geometry of
an object is known, for example when manual measurement or 3D scanning has
been performed. Our approach also generalizes to simultaneously tracking gaze with
multiple objects, as long as the objects’ position and orientation are unambiguously
identified, e. g. by including fiducial markers. The tracking accuracy in such situa-
tions will be subject to future investigation.

We developed our approach for 3D gaze tracking to analyze viewing behavior
for genuine 3D stimuli, and to explore what differences to 2D stimuli exist. Our ap-
proach in particular enables researchers to study visual saliency on physical objects
without scarifying accuracy. Given the substantial amount of work on saliency and
related questions that employed 2D stimuli for studying 3D objects, we believe this
to be a worthwhile research question that deserves further attention.
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We believe 3D gaze tracking will be a valuable tool for research in computer sci-
ence, cognitive science, and other disciplines. The fast and simple calibration proce-
dure (comparable to typical 2D calibration) that is provided by our approach enables
researcher to extend their data collection without significantly changing their current
workflow.
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